CLOSE OPERATOR ALGEBRAS

Stuart White

University of Glasgow

22 April 2013 Spring Operator Algebra Program East China Normal University

A METRIC ON SUBALGEBRAS OF $\mathcal{B}(\mathcal{H})$

KADISON-KASTLER 1972

DEFINITION

Let A, B be C^* -subalgebras of $\mathcal{B}(\mathcal{H})$. The Kadison-Kastler distance d(A, B) is the infimum of $\gamma > 0$ such that for all operators x in the unit ball of one algebra, there exists y in the unit ball of the other algebra with $\|x - y\| < \gamma$.

Theme of the talk

What can be said when d(A, B) is small?

- Aim: Give survey of what is known.
- See similarities and differences between *C**-algebra and von Neumann algebra settings.
- Establish connections to similarity and derivation problems.

A METRIC ON SUBALGEBRAS OF $\mathcal{B}(\mathcal{H})$

KADISON-KASTLER 1972

DEFINITION

Let A, B be C^* -subalgebras of $\mathcal{B}(\mathcal{H})$. The Kadison-Kastler distance d(A, B) is the infimum of $\gamma > 0$ such that for all operators x in the unit ball of one algebra, there exists y in the unit ball of the other algebra with $\|x - y\| < \gamma$.

THEME OF THE TALK

What can be said when d(A, B) is small?

- Aim: Give survey of what is known.
- See similarities and differences between *C**-algebra and von Neumann algebra settings.
- Establish connections to similarity and derivation problems.

A METRIC ON SUBALGEBRAS OF $\mathcal{B}(\mathcal{H})$

KADISON-KASTLER 1972

DEFINITION

Let A, B be C^* -subalgebras of $\mathcal{B}(\mathcal{H})$. The Kadison-Kastler distance d(A, B) is the infimum of $\gamma > 0$ such that for all operators x in the unit ball of one algebra, there exists y in the unit ball of the other algebra with $\|x - y\| < \gamma$.

THEME OF THE TALK

What can be said when d(A, B) is small?

- Aim: Give survey of what is known.
- See similarities and differences between *C**-algebra and von Neumann algebra settings.
- Establish connections to similarity and derivation problems.

EASY CONSTRUCTION

For a unitary u, $d(A, uAu^*) \leq 2||u - 1_{\mathcal{H}}||$.

Is this the only way of constructing a close pair of operator algebras?

More generally, we have a range of questions

- Must A and B share the same properties and invariants?
- Must A and B be *-isomorphic?
- Must A and B be spatially isomorphic? Can one find a unitary implementing a spatial isomorphism in $(A \cup B)''$?
- Is there a unitary $u \approx 1_{\mathcal{H}}$ with $uAu^* = B$?
 - Kadison-Kastler conjectured ??. Open for separable C*-algebras
 - ?? is open for von Neumann algebras. Fails for separable C^* -algebras.

EASY CONSTRUCTION

For a unitary u, $d(A, uAu^*) \leq 2||u - 1_{\mathcal{H}}||$.

Is this the only way of constructing a close pair of operator algebras?

More generally, we have a range of questions

- Must A and B share the same properties and invariants?
- Must A and B be *-isomorphic?
- Must A and B be spatially isomorphic? Can one find a unitary implementing a spatial isomorphism in $(A \cup B)$ "?
- Is there a unitary $u \approx 1_{\mathcal{H}}$ with $uAu^* = B$?
 - Kadison-Kastler conjectured ??. Open for separable C*-algebras
 - ?? is open for von Neumann algebras. Fails for separable C^* -algebras.

EASY CONSTRUCTION

For a unitary u, $d(A, uAu^*) \leq 2||u - 1_{\mathcal{H}}||$.

Is this the only way of constructing a close pair of operator algebras?

More generally, we have a range of questions

- Must A and B share the same properties and invariants?
- Must A and B be *-isomorphic?
- Must A and B be spatially isomorphic? Can one find a unitary implementing a spatial isomorphism in (A ∪ B)''?
- Is there a unitary $u \approx 1_{\mathcal{H}}$ with $uAu^* = B$?
 - Kadison-Kastler conjectured ??. Open for separable C*-algebras
- ?? is open for von Neumann algebras. Fails for separable C^* -algebras.

EASY CONSTRUCTION

For a unitary u, $d(A, uAu^*) \leq 2||u - 1_{\mathcal{H}}||$.

Is this the only way of constructing a close pair of operator algebras?

More generally, we have a range of questions

- Must A and B share the same properties and invariants?
- Must A and B be *-isomorphic?
- Must A and B be spatially isomorphic? Can one find a unitary implementing a spatial isomorphism in $(A \cup B)''$?
- Is there a unitary $u \approx 1_{\mathcal{H}}$ with $uAu^* = B$?
- Kadison-Kastler conjectured ??. Open for separable C*-algebras
- ?? is open for von Neumann algebras. Fails for separable C^* -algebras.

EASY CONSTRUCTION

For a unitary u, $d(A, uAu^*) \leq 2||u - 1_{\mathcal{H}}||$.

Is this the only way of constructing a close pair of operator algebras?

More generally, we have a range of questions

- Must A and B share the same properties and invariants?
- Must A and B be *-isomorphic?
- **1** Must A and B be spatially isomorphic? Can one find a unitary implementing a spatial isomorphism in $(A \cup B)''$?
- Is there a unitary $u \approx 1_{\mathcal{H}}$ with $uAu^* = B$?
- Kadison-Kastler conjectured ??. Open for separable C*-algebras
- ?? is open for von Neumann algebras. Fails for separable C*-algebras.

EASY CONSTRUCTION

For a unitary u, $d(A, uAu^*) \leq 2||u - 1_{\mathcal{H}}||$.

Is this the only way of constructing a close pair of operator algebras?

More generally, we have a range of questions

- Must A and B share the same properties and invariants?
- Must A and B be *-isomorphic?
- Must A and B be spatially isomorphic? Can one find a unitary implementing a spatial isomorphism in $(A \cup B)''$?
- Is there a unitary $u \approx 1_H$ with $uAu^* = B$?
 - Kadison-Kastler conjectured ??. Open for separable C*-algebras
 - ?? is open for von Neumann algebras. Fails for separable *C**-algebras.

EASY CONSTRUCTION

For a unitary u, $d(A, uAu^*) \leq 2||u - 1_{\mathcal{H}}||$.

Is this the only way of constructing a close pair of operator algebras?

MORE GENERALLY, WE HAVE A RANGE OF QUESTIONS

- Must A and B share the same properties and invariants?
- Must A and B be *-isomorphic?
- Must A and B be spatially isomorphic? Can one find a unitary implementing a spatial isomorphism in $(A \cup B)''$?
- Is there a unitary $u \approx 1_H$ with $uAu^* = B$?
- Kadison-Kastler conjectured ??. Open for separable C*-algebras
- ?? is open for von Neumann algebras. Fails for separable *C**-algebras.

EASY CONSTRUCTION

For a unitary u, $d(A, uAu^*) \leq 2||u - 1_{\mathcal{H}}||$.

Is this the only way of constructing a close pair of operator algebras?

More generally, we have a range of questions

- Must A and B share the same properties and invariants?
- Must A and B be *-isomorphic?
- Must A and B be spatially isomorphic? Can one find a unitary implementing a spatial isomorphism in $(A \cup B)''$?
- Is there a unitary $u \approx 1_H$ with $uAu^* = B$?
 - Kadison-Kastler conjectured ??. Open for separable C*-algebras
- ?? is open for von Neumann algebras. Fails for separable C*-algebras.

SOME PROPERTIES AND INVARIANTS

TYPE DECOMPOSITION

THEOREM (KADISON-KASTLER 1972)

Close von Neumann algebras have the same type decompositions.

Precisely, suppose

- M, N are von Neumann algebras on \mathcal{H} with d(M, N) sufficiently small.
- $p_{I_n}, p_{II_1}, p_{II_{\infty}}, p_{III}$ be the central projections in M onto the parts of types I_n , II_1 , II_{∞} and III respectively.
- $q_{I_n}, q_{II_1}, q_{II_{\infty}}, q_{III}$ corresponding projections for N.

Then each $||p_j - q_j||$ is small.

They also show that if d(M, N) is small (< 1/10), then M is a factor if and only if N is a factor.

SOME PROPERTIES AND INVARIANTS

TYPE DECOMPOSITION

THEOREM (KADISON-KASTLER 1972)

Close von Neumann algebras have the same type decompositions.

Precisely, suppose:

- M, N are von Neumann algebras on \mathcal{H} with d(M, N) sufficiently small.
- p_{In}, p_{II1}, p_{II∞}, p_{III} be the central projections in M onto the parts of types I_n, II₁, II_∞ and III respectively.
- $q_{I_n}, q_{II_1}, q_{II_{\infty}}, q_{III}$ corresponding projections for N.

Then each $||p_j - q_j||$ is small.

They also show that if d(M, N) is small (< 1/10), then M is a factor if and only if N is a factor.

SOME PROPERTIES AND INVARIANTS

TYPE DECOMPOSITION

THEOREM (KADISON-KASTLER 1972)

Close von Neumann algebras have the same type decompositions.

Precisely, suppose:

- M, N are von Neumann algebras on \mathcal{H} with d(M, N) sufficiently small.
- p_{In}, p_{II1}, p_{II∞}, p_{III} be the central projections in M onto the parts of types I_n, II₁, II_∞ and III respectively.
- $q_{I_n}, q_{II_1}, q_{II_{\infty}}, q_{III}$ corresponding projections for N.

Then each $||p_j - q_j||$ is small.

They also show that if d(M, N) is small (< 1/10), then M is a factor if and only if N is a factor.

THEOREM (PHILLIPS 1974)

Suppose A and B are sufficiently close C*-algebras. Then

- A and B have isomorphic and close ideal lattices.
- This takes primitive ideals to primitive ideals and is a homeomorphism for the hull-kernel topology.
- A is type I if and only if B is type I.

By isomorphic and close ideal lattices, we mean that there is a lattice isomorphism $A \trianglerighteq I \mapsto \theta(I) \unlhd B$ such that $d(I, \theta(I))$ is small for all I.

COROLLARY

THEOREM (PHILLIPS 1974)

Suppose A and B are sufficiently close C*-algebras. Then

- A and B have isomorphic and close ideal lattices.
- This takes primitive ideals to primitive ideals and is a homeomorphism for the hull-kernel topology.
- A is type I if and only if B is type I.

By isomorphic and close ideal lattices, we mean that there is a lattice isomorphism $A \trianglerighteq I \mapsto \theta(I) \unlhd B$ such that $d(I, \theta(I))$ is small for all I.

COROLLARY

THEOREM (PHILLIPS 1974)

Suppose A and B are sufficiently close C*-algebras. Then

- A and B have isomorphic and close ideal lattices.
- This takes primitive ideals to primitive ideals and is a homeomorphism for the hull-kernel topology.
- A is type I if and only if B is type I.

By isomorphic and close ideal lattices, we mean that there is a lattice isomorphism $A \trianglerighteq I \mapsto \theta(I) \unlhd B$ such that $d(I, \theta(I))$ is small for all I.

COROLLARY

THEOREM (PHILLIPS 1974)

Suppose A and B are sufficiently close C*-algebras. Then

- A and B have isomorphic and close ideal lattices.
- This takes primitive ideals to primitive ideals and is a homeomorphism for the hull-kernel topology.
- A is type I if and only if B is type I.

By isomorphic and close ideal lattices, we mean that there is a lattice isomorphism $A \trianglerighteq I \mapsto \theta(I) \unlhd B$ such that $d(I, \theta(I))$ is small for all I.

COROLLARY

NEAR CONTAINMENTS

CHRISTENSEN 1980

DEFINITION

For $A, B \subset \mathcal{B}(\mathcal{H})$ write $A \subseteq_{\gamma} B$ if given $x \in A$, there exists $y \in B$ such that $||x - y|| \le \gamma ||x||$. In this case say A is γ -contained in B.

Similar range of questions:

- Must a sufficiently small near containment A ⊂ B give rise to an embedding A ← B?
- **②** If so, can an embedding $\theta: A \hookrightarrow B$ with $\|\theta \iota\|$ small be found?
- Must a sufficiently small near containment arise from a small unitary conjugate of a genuine inclusion?

A CB-VERSION OF THE METRIC

- It's natural to take matrix amplifications of operator algebras
- $A \subset \mathcal{B}(\mathcal{H})$, gives $M_n(A) \subseteq M_n(\mathcal{B}(\mathcal{H})) \cong \mathcal{B}(\mathcal{H}^n)$.

DEFINITION

Given $A, B \subset \mathcal{B}(\mathcal{H})$, define

$$d_{cb}(A,B) = \sup_{n} (M_n(A), M_n(B)).$$

Similarly $A \subseteq_{cb,\gamma} B$ iff $M_n(A) \subseteq_{\gamma} M_n(B)$ for all n.

THEOREM (KHOSHKAM 1984)

Suppose A, B are C^* -algebras with $d_{cb}(A, B) < 1/3$. Then $K_0(A) \cong K_0(B)$ and $K_1(A) \cong K_1(B)$.

A CB-VERSION OF THE METRIC

- It's natural to take matrix amplifications of operator algebras
- $A \subset \mathcal{B}(\mathcal{H})$, gives $M_n(A) \subseteq M_n(\mathcal{B}(\mathcal{H})) \cong \mathcal{B}(\mathcal{H}^n)$.

DEFINITION

Given $A, B \subset \mathcal{B}(\mathcal{H})$, define

$$d_{cb}(A,B) = \sup_{n}(M_n(A),M_n(B)).$$

Similarly $A \subseteq_{cb,\gamma} B$ iff $M_n(A) \subseteq_{\gamma} M_n(B)$ for all n.

THEOREM (KHOSHKAM 1984)

Suppose A,B are C^* -algebras with $d_{cb}(A,B)<1/3$. Then $K_0(A)\cong K_0(B)$ and $K_1(A)\cong K_1(B)$.

A CB-VERSION OF THE METRIC

- It's natural to take matrix amplifications of operator algebras
- $A \subset \mathcal{B}(\mathcal{H})$, gives $M_n(A) \subseteq M_n(\mathcal{B}(\mathcal{H})) \cong \mathcal{B}(\mathcal{H}^n)$.

DEFINITION

Given $A, B \subset \mathcal{B}(\mathcal{H})$, define

$$d_{cb}(A,B) = \sup_{n}(M_n(A),M_n(B)).$$

Similarly $A \subseteq_{cb,\gamma} B$ iff $M_n(A) \subseteq_{\gamma} M_n(B)$ for all n.

THEOREM (KHOSHKAM 1984)

Suppose A, B are C*-algebras with $d_{cb}(A,B)<1/3$. Then $K_0(A)\cong K_0(B)$ and $K_1(A)\cong K_1(B)$.

THE CB-METRIC AND COMMUTANTS

ARVESON'S DISTANCE FORMULA

Let $A \subset \mathcal{B}(\mathcal{H})$ be a C^* -algebra and $T \in \mathcal{B}(\mathcal{H})$. Then

$$d(T, A') = \|ad(T)|_A\|_{cb}/2.$$

Here $ad(T)|_A$ is the spatial derivation $x \mapsto [T, x] = Tx - xT$.

CONSEQUENCE

• $A \subseteq_{\gamma,cb} B \implies B' \subseteq_{\gamma,cb} A'$

Two Questions

- Are d and d_{cb} locally equivalent? i.e. for each A is there some K_A such that $d_{cb}(A, \cdot) \leq K_A d(A, \cdot)$?
- How does commutation behave in the metric d?

THE CB-METRIC AND COMMUTANTS

ARVESON'S DISTANCE FORMULA

Let $A \subset \mathcal{B}(\mathcal{H})$ be a C^* -algebra and $T \in \mathcal{B}(\mathcal{H})$. Then

$$d(T,A') = \|\operatorname{ad}(T)|_A\|_{cb}/2.$$

Here $ad(T)|_A$ is the spatial derivation $x \mapsto [T, x] = Tx - xT$.

Consequence

• $A \subseteq_{\gamma,cb} B \implies B' \subseteq_{\gamma,cb} A'$

Two Questions

- Are d and d_{cb} locally equivalent? i.e. for each A is there some K_A such that $d_{cb}(A, \cdot) \leq K_A d(A, \cdot)$?
- When the entire is a second of the entire is a second of the entire in the entire in the entire is a second of the entire in the entire in the entire is a second of the entire in the entire in the entire is a second of the entire in the entire in the entire is a second of the entire in the entire in the entire in the entire is a second of the entire in the enti

THE CB-METRIC AND COMMUTANTS

ARVESON'S DISTANCE FORMULA

Let $A \subset \mathcal{B}(\mathcal{H})$ be a C^* -algebra and $T \in \mathcal{B}(\mathcal{H})$. Then

$$d(T,A') = \|\operatorname{ad}(T)|_A\|_{cb}/2.$$

Here $ad(T)|_A$ is the spatial derivation $x \mapsto [T, x] = Tx - xT$.

Consequence

• $A \subseteq_{\gamma,cb} B \implies B' \subseteq_{\gamma,cb} A'$

Two Questions

- Are d and d_{cb} locally equivalent? i.e. for each A is there some K_A such that $d_{cb}(A, \cdot) \leq K_A d(A, \cdot)$?
- 4 How does commutation behave in the metric d?

THE SIMILARITY PROPERTY

QUESTION (KADISON '54)

Let A be a C^* -algebra. Is every bounded homomorphism $\pi: A \to \mathcal{B}(\mathcal{H})$ similar to a *-homomorphism?

- Still open. If yes, say A has the similarity property.
- Yes if A has no bounded traces, A is nuclear.
- For II_1 factors M, yes when M has Murray and von Neumann's property Γ .

REFORMULATION USING CHRISTENSEN, KIRCHBERG

Let A be a C^* -algebra. Then A has the similarity property if and only if there exists a constant K > 0 such that for every representation $\pi: A \to \mathcal{B}(\mathcal{H})$, we have $\|\mathrm{ad}(T)|_{\pi(A)}\|_{cb} \leqslant K\|\mathrm{ad}(T)|_{\pi(A)}\|$, $T \in \mathcal{B}(\mathcal{H})$.

• If A has SP, then $\exists K$ such that $A \subseteq_{\gamma} B \Longrightarrow B' \subseteq_{cb,K_{\gamma}} A'$.

THE SIMILARITY PROPERTY

QUESTION (KADISON '54)

Let A be a C^* -algebra. Is every bounded homomorphism $\pi: A \to \mathcal{B}(\mathcal{H})$ similar to a *-homomorphism?

- Still open. If yes, say A has the similarity property.
- Yes if A has no bounded traces, A is nuclear.
- For II₁ factors M, yes when M has Murray and von Neumann's property Γ.

REFORMULATION USING CHRISTENSEN, KIRCHBERG

Let A be a C^* -algebra. Then A has the similarity property if and only if there exists a constant K > 0 such that for every representation $\pi: A \to \mathcal{B}(\mathcal{H})$, we have $\|\mathrm{ad}(T)|_{\pi(A)}\|_{cb} \leqslant K\|\mathrm{ad}(T)|_{\pi(A)}\|$, $T \in \mathcal{B}(\mathcal{H})$.

• If A has SP, then $\exists K$ such that $A \subseteq_{\gamma} B \implies B' \subseteq_{cb,K_{\gamma}} A'$.

THE SIMILARITY PROPERTY

QUESTION (KADISON '54)

Let A be a C^* -algebra. Is every bounded homomorphism $\pi: A \to \mathcal{B}(\mathcal{H})$ similar to a *-homomorphism?

- Still open. If yes, say A has the similarity property.
- Yes if A has no bounded traces, A is nuclear.
- For II₁ factors M, yes when M has Murray and von Neumann's property Γ.

REFORMULATION USING CHRISTENSEN, KIRCHBERG

Let A be a C^* -algebra. Then A has the similarity property if and only if there exists a constant K > 0 such that for every representation $\pi: A \to \mathcal{B}(\mathcal{H})$, we have $\|\mathrm{ad}(T)|_{\pi(A)}\|_{cb} \leqslant K\|\mathrm{ad}(T)|_{\pi(A)}\|$, $T \in \mathcal{B}(\mathcal{H})$.

• If A has SP, then $\exists K$ such that $A \subseteq_{\gamma} B \implies B' \subseteq_{cb,K_{\gamma}} A'$.

When are d_{cb} and d equivalent?

THEOREM (CHRISTENSEN, SINCLAIR, SMITH, W))

Suppose A is a C^* -algebra with the similarity property. Then there exists $\gamma_0 > 0$ such that if $d(A,B) < \gamma_0$, then B has the similarity property.

- γ_0 depends only on how well A has the similarity property;
- Also obtain quantitative estimates on how well B has similarity property.

COROLLARY

If *A* has similarity property, then $\exists C > 0$ such that $d_{cb}(A, B) \leqslant Cd(A, B)$ for all *B* and so if d(A, B) small, then $K_*(A) \cong K_*(B)$.

In fact this characterises the similarity property for A. Further, the similarity problem has a positive answer if and only the map $A \mapsto A'$ is continuous on C^* -subalgebras of $\mathcal{B}(\mathcal{H})$ (for a separable infinite dimensional Hilbert space).

When are d_{cb} and d equivalent?

THEOREM (CHRISTENSEN, SINCLAIR, SMITH, W))

Suppose A is a C^* -algebra with the similarity property. Then there exists $\gamma_0 > 0$ such that if $d(A,B) < \gamma_0$, then B has the similarity property.

- γ_0 depends only on how well A has the similarity property;
- Also obtain quantitative estimates on how well B has similarity property.

COROLLARY

If A has similarity property, then $\exists C > 0$ such that $d_{cb}(A, B) \leq Cd(A, B)$ for all B and so if d(A, B) small, then $K_*(A) \cong K_*(B)$.

In fact this characterises the similarity property for A. Further, the similarity problem has a positive answer if and only the map $A \mapsto A'$ is continuous on C^* -subalgebras of $\mathcal{B}(\mathcal{H})$ (for a separable infinite dimensional Hilbert space).

When are d_{cb} and d equivalent?

THEOREM (CHRISTENSEN, SINCLAIR, SMITH, W))

Suppose A is a C^* -algebra with the similarity property. Then there exists $\gamma_0 > 0$ such that if $d(A,B) < \gamma_0$, then B has the similarity property.

- γ_0 depends only on how well A has the similarity property;
- Also obtain quantitative estimates on how well B has similarity property.

COROLLARY

If A has similarity property, then $\exists C > 0$ such that $d_{cb}(A, B) \leqslant Cd(A, B)$ for all B and so if d(A, B) small, then $K_*(A) \cong K_*(B)$.

In fact this characterises the similarity property for A. Further, the similarity problem has a positive answer if and only the map $A \mapsto A'$ is continuous on C^* -subalgebras of $\mathcal{B}(\mathcal{H})$ (for a separable infinite dimensional Hilbert space).

PROPOSITION (CHRISTENSEN, SINCLAIR, SMITH, W.)

Suppose d(A, B) < 1/14. Then A has real rank zero iff B has real rank zero.

The definition of real rank zero (the invertible self-adjoints are dense in the self-adjoints) wasn't very helpful. Used every hereditary subalgebra has an approximate unit of projections reformulation.

QUESTION

What about higher values of the real rank, stable rank? It's unknown whether stable rank one transfers to sufficiently close algebras.

THEOREM (CHRISTENSEN, RAEBURN-TAYLOR)

Let M and N be sufficiently close von Neumann algebras. Then M is injective if and only if N is injective. Similarly for nuclear C^* -algebras.

PROPOSITION (CHRISTENSEN, SINCLAIR, SMITH, W.)

Suppose d(A, B) < 1/14. Then A has real rank zero iff B has real rank zero.

The definition of real rank zero (the invertible self-adjoints are dense in the self-adjoints) wasn't very helpful. Used every hereditary subalgebra has an approximate unit of projections reformulation.

QUESTION

What about higher values of the real rank, stable rank? It's unknown whether stable rank one transfers to sufficiently close algebras.

THEOREM (CHRISTENSEN, RAEBURN-TAYLOR)

Let M and N be sufficiently close von Neumann algebras. Then M is injective if and only if N is injective. Similarly for nuclear C^* -algebras.

PROPOSITION (CHRISTENSEN, SINCLAIR, SMITH, W.)

Suppose d(A, B) < 1/14. Then A has real rank zero iff B has real rank zero.

The definition of real rank zero (the invertible self-adjoints are dense in the self-adjoints) wasn't very helpful. Used every hereditary subalgebra has an approximate unit of projections reformulation.

QUESTION

What about higher values of the real rank, stable rank? It's unknown whether stable rank one transfers to sufficiently close algebras.

THEOREM (CHRISTENSEN, RAEBURN-TAYLOR)

Let M and N be sufficiently close von Neumann algebras. Then M is injective if and only if N is injective. Similarly for nuclear C^* -algebras.

PROPOSITION (CHRISTENSEN, SINCLAIR, SMITH, W.)

Suppose d(A, B) < 1/14. Then A has real rank zero iff B has real rank zero.

The definition of real rank zero (the invertible self-adjoints are dense in the self-adjoints) wasn't very helpful. Used every hereditary subalgebra has an approximate unit of projections reformulation.

QUESTION

What about higher values of the real rank, stable rank? It's unknown whether stable rank one transfers to sufficiently close algebras.

THEOREM (CHRISTENSEN, RAEBURN-TAYLOR)

Let M and N be sufficiently close von Neumann algebras. Then M is injective if and only if N is injective. Similarly for nuclear C^* -algebras.

THEOREM (PERERA, TOMS, W, WINTER)

Suppose $d_{cb}(A, B) < 1/42$. Then A and B have isomorphic Cuntz semigroups.

THEOREM

If $d_{cb}(A, B)$ is sufficiently small, and A is unital, then A and B have the same Elliott invariant.

This uses Khoskham's work, to get an isomorphism between K-theories, a method for transferring trace spaces from CSSW, then the Cuntz semigroup result (which gives a method for transferring quasi-trace spaces in a homeomorphic fashion, extending the map at the level of traces from CSSW).

MORE QUESTIONS

What about Ext, KK-theory, the UCT?

THEOREM (PERERA, TOMS, W, WINTER)

Suppose $d_{cb}(A, B) < 1/42$. Then A and B have isomorphic Cuntz semigroups.

THEOREM

If $d_{cb}(A, B)$ is sufficiently small, and A is unital, then A and B have the same Elliott invariant.

This uses Khoskham's work, to get an isomorphism between *K*-theories, a method for transferring trace spaces from CSSW, then the Cuntz semigroup result (which gives a method for transferring quasi-trace spaces in a homeomorphic fashion, extending the map at the level of traces from CSSW).

More questions

What about Ext, KK-theory, the UCT?

THEOREM (PERERA, TOMS, W, WINTER)

Suppose $d_{cb}(A, B) < 1/42$. Then A and B have isomorphic Cuntz semigroups.

THEOREM

If $d_{cb}(A, B)$ is sufficiently small, and A is unital, then A and B have the same Elliott invariant.

This uses Khoskham's work, to get an isomorphism between K-theories, a method for transferring trace spaces from CSSW, then the Cuntz semigroup result (which gives a method for transferring quasi-trace spaces in a homeomorphic fashion, extending the map at the level of traces from CSSW).

More QUESTIONS
What about Ext, KK-theory, the UCT?

THEOREM (PERERA, TOMS, W, WINTER)

Suppose $d_{cb}(A, B) < 1/42$. Then A and B have isomorphic Cuntz semigroups.

THEOREM

If $d_{cb}(A, B)$ is sufficiently small, and A is unital, then A and B have the same Elliott invariant.

This uses Khoskham's work, to get an isomorphism between K-theories, a method for transferring trace spaces from CSSW, then the Cuntz semigroup result (which gives a method for transferring quasi-trace spaces in a homeomorphic fashion, extending the map at the level of traces from CSSW).

More questions

What about Ext, KK-theory, the UCT?

 Tensorial absorption a key theme in operator algebras, since Connes showed that an injective II₁ factor M is McDuff, i.e. M ≅ M ⊗ R, where R is the hyperfinite II₁ factor.

THEOREM (CAMERON, CHRISTENSEN, SINCLAIR, SMITH, W. WIGGINS)

Let $M = M_0 \otimes R$ be a McDuff II_1 factor and suppose that N is another von Neumann algebra with d(M, N) sufficiently small. Then N is McDuff. Further, we can find a McDuff factorisation $N = N_0 \otimes R_1$ with $d_{cb}(M_0, N_0)$ small and $d_{cb}(R, R_1)$ small.

THEOREM (PERERA, TOMS, W, WINTER)

Suppose *A* and *B* are σ -unital and d(A,B) < 1/252. If *A* is stable, and has stable rank one, then *B* is stable.

• We do not know a general result for stable C^* -algebras. Similar questions are open for $M_{2\infty}$ -stable algebras and \mathbb{Z} -stable

 Tensorial absorption a key theme in operator algebras, since Connes showed that an injective II₁ factor M is McDuff, i.e.
 M ≅ M ⊗ R, where R is the hyperfinite II₁ factor.

THEOREM (CAMERON, CHRISTENSEN, SINCLAIR, SMITH, W, WIGGINS)

Let $M = M_0 \overline{\otimes} R$ be a McDuff II₁ factor and suppose that N is another von Neumann algebra with d(M,N) sufficiently small. Then N is McDuff. Further, we can find a McDuff factorisation $N = N_0 \overline{\otimes} R_1$ with $d_{cb}(M_0,N_0)$ small and $d_{cb}(R,R_1)$ small.

THEOREM (PERERA, TOMS, W, WINTER)

Suppose *A* and *B* are σ -unital and d(A, B) < 1/252. If *A* is stable, and has stable rank one, then *B* is stable.

• We do not know a general result for stable C^* -algebras. Similar questions are open for $M_{2\infty}$ -stable algebras and \mathcal{Z} -stable

 Tensorial absorption a key theme in operator algebras, since Connes showed that an injective II₁ factor M is McDuff, i.e.
 M ≅ M ⊗ R, where R is the hyperfinite II₁ factor.

THEOREM (CAMERON, CHRISTENSEN, SINCLAIR, SMITH, W, WIGGINS)

Let $M=M_0 \ \overline{\otimes} \ R$ be a McDuff II₁ factor and suppose that N is another von Neumann algebra with d(M,N) sufficiently small. Then N is McDuff. Further, we can find a McDuff factorisation $N=N_0 \ \overline{\otimes} \ R_1$ with $d_{cb}(M_0,N_0)$ small and $d_{cb}(R,R_1)$ small.

THEOREM (PERERA, TOMS, W, WINTER)

Suppose *A* and *B* are σ -unital and d(A,B) < 1/252. If *A* is stable, and has stable rank one, then *B* is stable.

• We do not know a general result for stable C^* -algebras. Similar questions are open for $M_{2\infty}$ -stable algebras and \mathbb{Z} -stable

• Tensorial absorption a key theme in operator algebras, since Connes showed that an injective II_1 factor M is McDuff, i.e. $M \cong M \overline{\otimes} R$, where R is the hyperfinite II_1 factor.

THEOREM (CAMERON, CHRISTENSEN, SINCLAIR, SMITH, W, WIGGINS)

Let $M=M_0 \ \overline{\otimes} \ R$ be a McDuff II₁ factor and suppose that N is another von Neumann algebra with d(M,N) sufficiently small. Then N is McDuff. Further, we can find a McDuff factorisation $N=N_0 \ \overline{\otimes} \ R_1$ with $d_{cb}(M_0,N_0)$ small and $d_{cb}(R,R_1)$ small.

THEOREM (PERERA, TOMS, W, WINTER)

Suppose *A* and *B* are σ -unital and d(A,B) < 1/252. If *A* is stable, and has stable rank one, then *B* is stable.

• We do not know a general result for stable C^* -algebras. Similar questions are open for $M_{2\infty}$ -stable algebras and \mathcal{Z} -stable

• Tensorial absorption a key theme in operator algebras, since Connes showed that an injective II_1 factor M is McDuff, i.e. $M \cong M \overline{\otimes} R$, where R is the hyperfinite II_1 factor.

THEOREM (CAMERON, CHRISTENSEN, SINCLAIR, SMITH, W, WIGGINS)

Let $M=M_0 \ \overline{\otimes} \ R$ be a McDuff II₁ factor and suppose that N is another von Neumann algebra with d(M,N) sufficiently small. Then N is McDuff. Further, we can find a McDuff factorisation $N=N_0 \ \overline{\otimes} \ R_1$ with $d_{cb}(M_0,N_0)$ small and $d_{cb}(R,R_1)$ small.

THEOREM (PERERA, TOMS, W, WINTER)

Suppose A and B are σ -unital and d(A,B) < 1/252. If A is stable, and has stable rank one, then B is stable.

• We do not know a general result for stable C^* -algebras. Similar questions are open for $M_{2^{\infty}}$ -stable algebras and \mathcal{Z} -stable

ISOMORPHISM RESULTS

THEOREM (CHRISTENSEN, JOHNSON, RAEBURN-TAYLOR, 1977)

Suppose M and N are von Neumann algebras, with d(M,N) sufficiently small and M injective. Then there exists a unitary $u \in (M \cup N)''$ such that $uMu^* = N$ and $\|u - 1\| \leqslant O(d(M,N)^{1/2})$.

This gives the strongest form of the conjecture for injective von Neumann algebras. Also:

THEOREM (CHRISTENSEN 1980)

Suppose $M \subseteq_{\gamma} N$ for γ sufficiently small, where M is an injective von Neumann algebra. Then there exists a unitary $u \in (M \cup N)''$ with $uMu^* \subseteq N$ and $||u-1|| \le 150\gamma$.

 Taking commutants, one gets a similar near inclusion result for M ⊆_γ N when M has the similarity property and N is injective.

ISOMORPHISM RESULTS

THEOREM (CHRISTENSEN, JOHNSON, RAEBURN-TAYLOR, 1977)

Suppose M and N are von Neumann algebras, with d(M,N) sufficiently small and M injective. Then there exists a unitary $u \in (M \cup N)''$ such that $uMu^* = N$ and $\|u - 1\| \leqslant O(d(M,N)^{1/2})$.

This gives the strongest form of the conjecture for injective von Neumann algebras. Also:

THEOREM (CHRISTENSEN 1980)

Suppose $M \subseteq_{\gamma} N$ for γ sufficiently small, where M is an injective von Neumann algebra. Then there exists a unitary $u \in (M \cup N)''$ with $uMu^* \subseteq N$ and $||u-1|| \le 150\gamma$.

 Taking commutants, one gets a similar near inclusion result for M ⊆_γ N when M has the similarity property and N is injective.

ISOMORPHISM RESULTS

THEOREM (CHRISTENSEN, JOHNSON, RAEBURN-TAYLOR, 1977)

Suppose M and N are von Neumann algebras, with d(M,N) sufficiently small and M injective. Then there exists a unitary $u \in (M \cup N)''$ such that $uMu^* = N$ and $\|u - 1\| \leqslant O(d(M,N)^{1/2})$.

This gives the strongest form of the conjecture for injective von Neumann algebras. Also:

THEOREM (CHRISTENSEN 1980)

Suppose $M \subseteq_{\gamma} N$ for γ sufficiently small, where M is an injective von Neumann algebra. Then there exists a unitary $u \in (M \cup N)''$ with $uMu^* \subseteq N$ and $||u-1|| \le 150\gamma$.

 Taking commutants, one gets a similar near inclusion result for M ⊆_γ N when M has the similarity property and N is injective.

IDEA (CHRISTENSEN, JOHNSON, RAEBURN+TAYLOR)

Suppose $M, N \subseteq \mathcal{B}(\mathcal{H})$ are injective (for simplicity) and d(M, N) small.

- Consider a ucp map $\Phi : \mathcal{B}(\mathcal{H}) \to N$ with $\Phi|_N = \mathrm{id}_N$.
- This is almost multiplicative on M, i.e. $\Phi(xy) \approx \Phi(x)\Phi(y)$.
- Find (using injectivity) a *-homomorphism Φ : M → N close to Φ.
 One way to do this, is to do it for finite dimensional subalgebras of M with constants independent of the choice of subalgebra, then take a weak*-limit point.

Subsequently, Johnson extensively studied these ideas. He called a pair of Banach algebras (A, B) AMNM, if every almost multiplicative map $T: A \rightarrow B$ is near to a multiplicative map $S: A \rightarrow B$.

- (A, B) AMNM, whenever A an amenable Banach algebra, and B a dual Banach algebra.
- $(\ell^1, C(X))$ AMNM when X is compact and Hausdorff.

IDEA (CHRISTENSEN, JOHNSON, RAEBURN+TAYLOR)

Suppose $M, N \subseteq \mathcal{B}(\mathcal{H})$ are injective (for simplicity) and d(M, N) small.

- Consider a ucp map $\Phi : \mathcal{B}(\mathcal{H}) \to N$ with $\Phi|_N = \mathrm{id}_N$.
- This is almost multiplicative on M, i.e. $\Phi(xy) \approx \Phi(x)\Phi(y)$.
- Find (using injectivity) a *-homomorphism Φ : M → N close to Φ.
 One way to do this, is to do it for finite dimensional subalgebras of M with constants independent of the choice of subalgebra, then take a weak*-limit point.

Subsequently, Johnson extensively studied these ideas. He called a pair of Banach algebras (A, B) AMNM, if every almost multiplicative map $T: A \to B$ is near to a multiplicative map $S: A \to B$.

- (A, B) AMNM, whenever A an amenable Banach algebra, and B a dual Banach algebra.
- $(\ell^1, C(X))$ AMNM when X is compact and Hausdorff.

IDEA (CHRISTENSEN, JOHNSON, RAEBURN+TAYLOR)

Suppose $M, N \subseteq \mathcal{B}(\mathcal{H})$ are injective (for simplicity) and d(M, N) small.

- Consider a ucp map $\Phi : \mathcal{B}(\mathcal{H}) \to N$ with $\Phi|_N = \mathrm{id}_N$.
- This is almost multiplicative on M, i.e. $\Phi(xy) \approx \Phi(x)\Phi(y)$.
- Find (using injectivity) a *-homomorphism Φ : M → N close to Φ.
 One way to do this, is to do it for finite dimensional subalgebras of M with constants independent of the choice of subalgebra, then take a weak*-limit point.

Subsequently, Johnson extensively studied these ideas. He called a pair of Banach algebras (A,B) AMNM, if every almost multiplicative map $T:A\to B$ is near to a multiplicative map $S:A\to B$.

- (A, B) AMNM, whenever A an amenable Banach algebra, and B a dual Banach algebra.
- $(\ell^1, C(X))$ AMNM when X is compact and Hausdorff.

IDEA (CHRISTENSEN, JOHNSON, RAEBURN+TAYLOR)

Suppose $M, N \subseteq \mathcal{B}(\mathcal{H})$ are injective (for simplicity) and d(M, N) small.

- Consider a ucp map $\Phi : \mathcal{B}(\mathcal{H}) \to N$ with $\Phi|_N = \mathrm{id}_N$.
- This is almost multiplicative on M, i.e. $\Phi(xy) \approx \Phi(x)\Phi(y)$.
- Find (using injectivity) a *-homomorphism Φ : M → N close to Φ.
 One way to do this, is to do it for finite dimensional subalgebras of M with constants independent of the choice of subalgebra, then take a weak*-limit point.

Subsequently, Johnson extensively studied these ideas. He called a pair of Banach algebras (A,B) AMNM, if every almost multiplicative map $T:A\to B$ is near to a multiplicative map $S:A\to B$.

- (A, B) AMNM, whenever A an amenable Banach algebra, and B a dual Banach algebra.
- $(\ell^1, C(X))$ AMNM when X is compact and Hausdorff.

IDEA (CHRISTENSEN, JOHNSON, RAEBURN+TAYLOR)

Suppose $M, N \subseteq \mathcal{B}(\mathcal{H})$ are injective (for simplicity) and d(M, N) small.

- Consider a ucp map $\Phi : \mathcal{B}(\mathcal{H}) \to N$ with $\Phi|_{N} = \mathrm{id}_{N}$.
- This is almost multiplicative on M, i.e. $\Phi(xy) \approx \Phi(x)\Phi(y)$.
- Find (using injectivity) a *-homomorphism Φ : M → N close to Φ.
 One way to do this, is to do it for finite dimensional subalgebras of M with constants independent of the choice of subalgebra, then take a weak*-limit point.

Subsequently, Johnson extensively studied these ideas. He called a pair of Banach algebras (A, B) AMNM, if every almost multiplicative map $T: A \to B$ is near to a multiplicative map $S: A \to B$.

- (A, B) AMNM, whenever A an amenable Banach algebra, and B a dual Banach algebra.
- $(\ell^1, C(X))$ AMNM when X is compact and Hausdorff.

LIMITS OF THE AMNM METHOD

TWO COUNTER EXAMPLES

COUNTEREXAMPLE (CHOI, CHRISTENSEN '83)

For $\epsilon > 0$, there exist non-isomorphic amenable C*-algebras $A, B \subset \mathbb{B}(H)$ with $d(A, B) < \epsilon$.

Examples are not separable.

EXAMPLE (JOHNSON '82)

For $\epsilon > 0$, there exist two faithful representations of $C([0,1],\mathcal{K})$ on H with images A,B s.t. $d(A,B) < \epsilon$, yet any isomorphism $\theta : A \to B$ has $\|\theta(x) - x\| \ge \|x\|/70$ for some $x \in A$.

• In fact the x can be taken in a fixed copy of c_0 lying in $C([0,1], \mathcal{K})$.

LIMITS OF THE AMNM METHOD

TWO COUNTER EXAMPLES

COUNTEREXAMPLE (CHOI, CHRISTENSEN '83)

For $\epsilon > 0$, there exist non-isomorphic amenable C*-algebras $A, B \subset \mathbb{B}(H)$ with $d(A, B) < \epsilon$.

Examples are not separable.

EXAMPLE (JOHNSON '82)

For $\epsilon > 0$, there exist two faithful representations of $C([0,1], \mathcal{K})$ on H with images A, B s.t. $d(A, B) < \epsilon$, yet any isomorphism $\theta : A \to B$ has $\|\theta(x) - x\| \ge \|x\|/70$ for some $x \in A$.

• In fact the x can be taken in a fixed copy of c_0 lying in $C([0,1],\mathcal{K})$.

IDEA

The uniform topology isn't the right topology for maps between C^* -algebras. Use the point norm-topology instead.

POINT NORM AMNM:

$$||T(x_1x_2) - T(x_1)T(x_2)|| < \varepsilon, \quad x_1, x_2 \in X$$
?

- Yes when A is nuclear, using Haagerup's approximate diagonal.
- When d(A, B) is small and B is nuclear, can use completely positive approximation property to obtain such maps T_Y .

IDEA

The uniform topology isn't the right topology for maps between C^* -algebras. Use the point norm-topology instead.

POINT NORM AMNM:

$$||T(x_1x_2) - T(x_1)T(x_2)|| < \varepsilon, \quad x_1, x_2 \in X$$
?

- Yes when A is nuclear, using Haagerup's approximate diagonal.
- When d(A, B) is small and B is nuclear, can use completely positive approximation property to obtain such maps T_Y .

IDEA

The uniform topology isn't the right topology for maps between C^* -algebras. Use the point norm-topology instead.

POINT NORM AMNM:

$$||T(x_1x_2) - T(x_1)T(x_2)|| < \varepsilon, \quad x_1, x_2 \in X$$
?

- Yes when A is nuclear, using Haagerup's approximate diagonal.
- When d(A, B) is small and B is nuclear, can use completely positive approximation property to obtain such maps T_Y .

IDEA

The uniform topology isn't the right topology for maps between C^* -algebras. Use the point norm-topology instead.

POINT NORM AMNM:

$$||T(x_1x_2) - T(x_1)T(x_2)|| < \varepsilon, \quad x_1, x_2 \in X$$
?

- Yes when A is nuclear, using Haagerup's approximate diagonal.
- When d(A, B) is small and B is nuclear, can use completely positive approximation property to obtain such maps T_Y .

SEPARABLE NUCLEAR C^* -ALGEBRAS

Using an intertwining argument from the classification programme:

THEOREM (CHRISTENSEN, SINCLAIR, SMITH, W, WINTER)

Let $\mathcal H$ be a separable Hilbert space and let $A,B\subset \mathcal B(\mathcal H)$ be C^* -algebras. Suppose A is separable and nuclear and d(A,B) is sufficiently small. Then $A\cong B$.

Now an argument based on Bratelli's work on classifying type III factor representations of AF algebras, gives:

THEOREM (CHRISTENSEN, SINCLAIR, SMITH, W, WINTER)

Let \mathcal{H} be a separable Hilbert space and let $A, B \subset \mathcal{B}(\mathcal{H})$ be C*-algebras. Suppose A is separable and nuclear and d(A, B) is sufficiently small. Then there exists a unitary $u \in (A \cup B)''$ with $uAu^* = B$.

SEPARABLE NUCLEAR C^* -ALGEBRAS

Using an intertwining argument from the classification programme:

THEOREM (CHRISTENSEN, SINCLAIR, SMITH, W, WINTER)

Let $\mathcal H$ be a separable Hilbert space and let $A,B\subset \mathcal B(\mathcal H)$ be C^* -algebras. Suppose A is separable and nuclear and d(A,B) is sufficiently small. Then $A\cong B$.

Now an argument based on Bratelli's work on classifying type III factor representations of AF algebras, gives:

THEOREM (CHRISTENSEN, SINCLAIR, SMITH, W, WINTER)

Let \mathcal{H} be a separable Hilbert space and let $A, B \subset \mathcal{B}(\mathcal{H})$ be C*-algebras. Suppose A is separable and nuclear and d(A, B) is sufficiently small. Then there exists a unitary $u \in (A \cup B)''$ with $uAu^* = B$.

ANOTHER QUESTION

RECALL (JOHNSON '82)

For $\epsilon > 0$, there exist two faithful representations of $C([0,1],\mathcal{K})$ on H with images A,B s.t. $d(A,B) < \epsilon$, yet any isomorphism $\theta : A \to B$ has $\|\theta(x) - x\| \ge \|x\|/70$ for some $x \in A$.

QUESTION

Which C^* -algebras A have the property that when d(A, B) is sufficiently small, there exists an isomorphism $\theta: A \to B$ with $\sup_{x \in A, \|x\| \le 1} \|\theta(x) - x\|$ small?

- Unital subhomomogenous algebras of bounded degree satisfy this (Johnson).
- What about other algebras, $M_{2\infty}$?

ANOTHER QUESTION

RECALL (JOHNSON '82)

For $\epsilon > 0$, there exist two faithful representations of $C([0,1],\mathcal{K})$ on H with images A,B s.t. $d(A,B) < \epsilon$, yet any isomorphism $\theta : A \to B$ has $\|\theta(x) - x\| \ge \|x\|/70$ for some $x \in A$.

QUESTION

Which C^* -algebras A have the property that when d(A, B) is sufficiently small, there exists an isomorphism $\theta: A \to B$ with $\sup_{x \in A, \|x\| \le 1} \|\theta(x) - x\|$ small?

- Unital subhomomogenous algebras of bounded degree satisfy this (Johnson).
- What about other algebras, $M_{2\infty}$?

ANOTHER QUESTION

RECALL (JOHNSON '82)

For $\epsilon > 0$, there exist two faithful representations of $C([0,1],\mathcal{K})$ on H with images A,B s.t. $d(A,B) < \epsilon$, yet any isomorphism $\theta : A \to B$ has $\|\theta(x) - x\| \ge \|x\|/70$ for some $x \in A$.

QUESTION

Which C^* -algebras A have the property that when d(A, B) is sufficiently small, there exists an isomorphism $\theta: A \to B$ with $\sup_{x \in A, \|x\| \le 1} \|\theta(x) - x\|$ small?

- Unital subhomomogenous algebras of bounded degree satisfy this (Johnson).
- What about other algebras, M_{2∞}?

Recall that if $M \subseteq_{\gamma} N$ and M is injective, then there exists a unitary $u \approx 1$ with $uMu^* \subseteq N$.

THEOREM (HIRSHBERG, KIRCHBERG, W '11)

Let A be separable and nuclear and suppose $A \subseteq_{\gamma} B$ for $\gamma < 10^{-6}$. Then $A \hookrightarrow B$.

- A strengthening of the completely positive approximation property (due to Kirchberg) for nuclear C*-algebras: the approximating maps can be taken to be convex combinations of cpc order zero maps.
 - A perturbation theorem for order zero maps from Christensen,
 Sinclair, Smith, W, Winter.
 - When A is separable and nuclear and $A \subseteq_{\gamma} B$ for γ small, can one get a spatial embedding $A \hookrightarrow B$?

Recall that if $M \subseteq_{\gamma} N$ and M is injective, then there exists a unitary $u \approx 1$ with $uMu^* \subseteq N$.

THEOREM (HIRSHBERG, KIRCHBERG, W '11)

Let A be separable and nuclear and suppose $A \subseteq_{\gamma} B$ for $\gamma < 10^{-6}$. Then $A \hookrightarrow B$.

- A strengthening of the completely positive approximation property (due to Kirchberg) for nuclear C*-algebras: the approximating maps can be taken to be convex combinations of cpc order zero maps.
- A perturbation theorem for order zero maps from Christensen, Sinclair, Smith, W, Winter.
- When A is separable and nuclear and $A \subseteq_{\gamma} B$ for γ small, can one get a spatial embedding $A \hookrightarrow B$?

Recall that if $M \subseteq_{\gamma} N$ and M is injective, then there exists a unitary $u \approx 1$ with $uMu^* \subseteq N$.

THEOREM (HIRSHBERG, KIRCHBERG, W '11)

Let A be separable and nuclear and suppose $A \subseteq_{\gamma} B$ for $\gamma < 10^{-6}$. Then $A \hookrightarrow B$.

- A strengthening of the completely positive approximation property (due to Kirchberg) for nuclear C*-algebras: the approximating maps can be taken to be convex combinations of cpc order zero maps.
- A perturbation theorem for order zero maps from Christensen, Sinclair, Smith, W, Winter.
- When A is separable and nuclear and $A \subseteq_{\gamma} B$ for γ small, can one get a spatial embedding $A \hookrightarrow B$?

Recall that if $M \subseteq_{\gamma} N$ and M is injective, then there exists a unitary $u \approx 1$ with $uMu^* \subseteq N$.

THEOREM (HIRSHBERG, KIRCHBERG, W '11)

Let A be separable and nuclear and suppose $A \subseteq_{\gamma} B$ for $\gamma < 10^{-6}$. Then $A \hookrightarrow B$.

- A strengthening of the completely positive approximation property (due to Kirchberg) for nuclear C*-algebras: the approximating maps can be taken to be convex combinations of cpc order zero maps.
- A perturbation theorem for order zero maps from Christensen, Sinclair, Smith, W, Winter.
- When A is separable and nuclear and $A \subseteq_{\gamma} B$ for γ small, can one get a spatial embedding $A \hookrightarrow B$?

NON INJECTIVE ALGEBRAS

Consider a free, ergodic, probability measure preserving action $\alpha:\Gamma \curvearrowright (X,\mu)$ of a discrete group Γ and form the crossed product

$$L^{\infty}(X) \rtimes_{\alpha} \Gamma$$
.

This is a II₁ factor, generated by $A = L^{\infty}(X)$ and unitaries $(u_g)_{g \in \Gamma}$ satisfying

$$u_g f u_g^* = f \circ \alpha_g^{-1}, \quad u_g u_h = u_{gh}, \quad g,h \in \Gamma, \ f \in L^\infty(X).$$

Note:

• $L^{\infty}(X)$ injective

• Each $(L^{\infty}(X) \cup \{u_{a}\})''$ is injective.

NON INJECTIVE ALGEBRAS

Consider a free, ergodic, probability measure preserving action $\alpha:\Gamma \curvearrowright (X,\mu)$ of a discrete group Γ and form the crossed product

$$L^{\infty}(X) \rtimes_{\alpha} \Gamma$$
.

This is a II₁ factor, generated by $A = L^{\infty}(X)$ and unitaries $(u_g)_{g \in \Gamma}$ satisfying

$$u_g f u_g^* = f \circ \alpha_g^{-1}, \quad u_g u_h = u_{gh}, \quad g,h \in \Gamma, \ f \in L^\infty(X).$$

Note:

- L[∞](X) injective;
- Each $(L^{\infty}(X) \cup \{u_g\})''$ is injective.

NON INJECTIVE ALGEBRAS

Consider a free, ergodic, probability measure preserving action $\alpha:\Gamma \curvearrowright (X,\mu)$ of a discrete group Γ and form the crossed product

$$L^{\infty}(X) \rtimes_{\alpha} \Gamma$$
.

This is a II₁ factor, generated by $A = L^{\infty}(X)$ and unitaries $(u_g)_{g \in \Gamma}$ satisfying

$$u_g f u_g^* = f \circ \alpha_g^{-1}, \quad u_g u_h = u_{gh}, \quad g,h \in \Gamma, \ f \in L^\infty(X).$$

Note:

- L[∞](X) injective;
- Each $(L^{\infty}(X) \cup \{u_g\})''$ is injective.

- First factorise $N = N_0 \overline{\otimes} R$, conjugating by a unitary so that the copies of R are identical.
- As *M* is McDuff, it has the similarity property. This enables us to transfer to and from a standard form.
- Use the embedding theorems for injective von Neumann algebras to embedd each $(L^{\infty}(X) \cup \{u_q\})''$ into N_0 .
- Can use these embeddings to identify N_0 as a twisted crossed product, by a bounded element of $H^2(\Gamma, \mathcal{U}(L^\infty(X)))$ this will be cohomogically trivial by results of Monod and so $M \cong N$.
- Use a standard form trick, to get a unitary $u \approx 1$ implementing such an isomorphism.

- First factorise $N = N_0 \overline{\otimes} R$, conjugating by a unitary so that the copies of R are identical.
- As *M* is McDuff, it has the similarity property. This enables us to transfer to and from a standard form.
- Use the embedding theorems for injective von Neumann algebras to embedd each $(L^{\infty}(X) \cup \{u_q\})''$ into N_0 .
- Can use these embeddings to identify N_0 as a twisted crossed product, by a bounded element of $H^2(\Gamma, \mathcal{U}(L^\infty(X)))$ this will be cohomogically trivial by results of Monod and so $M \cong N$.
- Use a standard form trick, to get a unitary $u \approx 1$ implementing such an isomorphism.

- First factorise $N = N_0 \overline{\otimes} R$, conjugating by a unitary so that the copies of R are identical.
- As *M* is McDuff, it has the similarity property. This enables us to transfer to and from a standard form.
- Use the embedding theorems for injective von Neumann algebras to embedd each $(L^{\infty}(X) \cup \{u_q\})''$ into N_0 .
- Can use these embeddings to identify N_0 as a twisted crossed product, by a bounded element of $H^2(\Gamma, \mathcal{U}(L^\infty(X)))$ this will be cohomogically trivial by results of Monod and so $M \cong N$.
- Use a standard form trick, to get a unitary $u \approx 1$ implementing such an isomorphism.

- First factorise $N = N_0 \overline{\otimes} R$, conjugating by a unitary so that the copies of R are identical.
- As *M* is McDuff, it has the similarity property. This enables us to transfer to and from a standard form.
- Use the embedding theorems for injective von Neumann algebras to embedd each $(L^{\infty}(X) \cup \{u_q\})''$ into N_0 .
- Can use these embeddings to identify N_0 as a twisted crossed product, by a bounded element of $H^2(\Gamma, \mathcal{U}(L^\infty(X)))$ this will be cohomogically trivial by results of Monod and so $M \cong N$.
- Use a standard form trick, to get a unitary $u \approx 1$ implementing such an isomorphism.

- First factorise $N = N_0 \overline{\otimes} R$, conjugating by a unitary so that the copies of R are identical.
- As *M* is McDuff, it has the similarity property. This enables us to transfer to and from a standard form.
- Use the embedding theorems for injective von Neumann algebras to embedd each $(L^{\infty}(X) \cup \{u_g\})''$ into N_0 .
- Can use these embeddings to identify N_0 as a twisted crossed product, by a bounded element of $H^2(\Gamma, \mathcal{U}(L^\infty(X)))$ this will be cohomogically trivial by results of Monod and so $M \cong N$.
- Use a standard form trick, to get a unitary $u \approx 1$ implementing such an isomorphism.

- First factorise $N = N_0 \overline{\otimes} R$, conjugating by a unitary so that the copies of R are identical.
- As *M* is McDuff, it has the similarity property. This enables us to transfer to and from a standard form.
- Use the embedding theorems for injective von Neumann algebras to embedd each $(L^{\infty}(X) \cup \{u_g\})''$ into N_0 .
- Can use these embeddings to identify N_0 as a twisted crossed product, by a bounded element of $H^2(\Gamma, \mathcal{U}(L^\infty(X)))$ this will be cohomogically trivial by results of Monod and so $M \cong N$.
- Use a standard form trick, to get a unitary $u \approx 1$ implementing such an isomorphism.

- First factorise $N = N_0 \overline{\otimes} R$, conjugating by a unitary so that the copies of R are identical.
- As *M* is McDuff, it has the similarity property. This enables us to transfer to and from a standard form.
- Use the embedding theorems for injective von Neumann algebras to embedd each $(L^{\infty}(X) \cup \{u_g\})''$ into N_0 .
- Can use these embeddings to identify N_0 as a twisted crossed product, by a bounded element of $H^2(\Gamma, \mathcal{U}(L^\infty(X)))$ this will be cohomogically trivial by results of Monod and so $M \cong N$.
- Use a standard form trick, to get a unitary $u \approx 1$ implementing such an isomorphism.

- Christensen, Sinclair, Smith, W, Perturbations of C*-algebraic invariants, Geom. Funct. Anal., 2010.
- _____ C*-algebras nearly contained in type I algebras, Canad. J. Math., 2013.
- Christensen, Sinclair, Smith, W, Winter, Perturbations of nuclear C*-algebras, Acta Math., 2012.
- _____, The spatial isomorphism problem for close separable nuclear *C**-algebras, PNAS, 2010.
- Hirshberg, Kirchberg, W, Decomposable approximations of nuclear C*-algebras, Adv. Math., 2012.
- Cameron, Christensen, Sinclair, Smith, W, Wiggins, Kadison-Kastler stable factors, arXiv:1206.4116.
- _____, Type II₁ factors satisfying the spatial isomorphism conjecture, PNAS, 2012.
- ______, A remark on the similarity and perturbation problems, C.
 R. Math. Rep. Acad. Sci. Canada, 2013.
- Perera, Toms, W, Winter, The Cuntz semigroup and stability of close C*-algebras, arXiv:1210.4533.